当前位置 : IT培训网 > IT培训 > 交流分享 > 数据分析师和算法工程师区别 数据分析师分析思路是什么

数据分析师和算法工程师区别 数据分析师分析思路是什么

时间:2019-08-12 11:51:18  来源:技能培训网  作者:IT培训网  已有:名学员访问该课程
当今社会,对于数据分析师和算法工程师需求量是非常高的,相应地,待遇各方面也是一路走高,数据分析师和算法工程师哪个好学呢?两个区别在哪里?随着近年来产业的持续升级,大数据和人工智能的商业价值不断凸显。但很多人

当今社会,对于数据分析师和算法工程师需求量是非常高的,相应地,待遇各方面也是一路走高,数据分析师和算法工程师哪个好学呢?两个区别在哪里?随着近年来产业的持续升级,大数据和人工智能的商业价值不断凸显。但很多人对什么是数据分析师、算法分析师不是很了解,在这里,IT培训网给大家进行一一说明。

数据分析师和算法工程师区别 数据分析师分析思路是什么_www.itpxw.cn

数据分析师和算法工程师有什么区别?

一、意义不同

数据分析师 是数据师Datician的一种,指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。

算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。算法工程师就是利用算法处理事物的人。

二、薪资不同

数据分析师的职位平均工资大约在¥9086;算法工程师职位平均工资水平(元/月-税前)大约在¥1200之上。

数据分析师和算法工程师哪个难?由上可知算法工程师比数据分析师要难学。此外,企业对于数据分析师的技能要求很高,具体要求如下:

1、懂业务。

从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。

2、懂管理。

一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。

3、懂分析。

指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。

4、懂工具。

指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。

5、懂设计。

懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。

数据分析师的数据分析思路是什么?

1、细分分析

细分分析是数据分析的基础,单一维度下的指标数据信息价值很低。细分方法可以分为两类,一类是逐步分析,比如:来北京市的访客可分为朝阳,海淀等区;另一类是维度交叉,如:来自付费SEM的新访客。细分用于解决所有问题。

2、对比分析

对比分析主要是指将两个相互联系的指标数据进行比较,从数量上展示和说明研究对象的规模大小,水平高低,速度快慢等相对数值,通过相同维度下的指标对比,可以发现,找出业务在不同阶段的问题。常见的对比方法包括:时间对比,空间对比,标准对比。其中,时间对比有三种:同比,环比,定基比。

3、漏斗分析

转化漏斗分析是业务分析的基本模型,最常见的是把最终的转化设置为某种目的的实现,最典型的就是完成交易。但也可以是其他任何目的的实现,比如一次使用app的时间超过10分钟。

4、同期群分析

同期群(cohort)分析在数据运营领域十分重要,互联网运营特别需要仔细洞察留存情况。通过对性质完全一样的可对比群体的留存情况的比较,来分析哪些因素影响用户的留存。

5、聚类分析

聚类分析具有简单,直观的特征,网站分析中的聚类主要分为:用户,页面或内容,来源。用户聚类主要体现为用户分群,用户标签法;页面聚类则主要是相似,相关页面分组法;来源聚类主要包括渠道,关键词等。

6、AB测试

增长黑客的一个主要思想之一,是不要做一个大而全的东西,而是不断做出能够快速验证的小而精的东西。快速验证,那如何验证呢?主要方法就是AB测试。

7、埋点分析

只有采集了足够的基础数据,才能通过各种分析方法得到需要的分析结果。通过分析用户行为,并细分为:浏览行为,轻度交互,重度交互,交易行为,对于浏览行为和轻度交互行为的点击按钮等事件,因其使用频繁,数据简单,采用无埋点技术实现自助埋点,即可以提高数据分析的实效性,需要的数据可立即提取,又大量减少技术人员的工作量,需要采集更丰富信息的行为。

8、来源分析

流量红利消失,我们对获客来源的重视度极高,如何有效的标注用户来源,至关重要。传统分析工具,渠道分析仅有单一维度,要深入分析不同渠道不同阶段效果,SEM付费搜索等来源渠道和用户所在地区进行交叉分析,得出不同区域的获客详细信息,维度越细,分析结果也越有价值。

9、用户分析

用户分析是互联网运营的核心,常用的分析方法包括:活跃分析,留存分析,用户分群,用户画像,用户细查等。

10、表单分析

填写表单是每个平台与用户交互的必备环节,优秀的表单设计,对转化率的提升起到重要作用。

顶一下
(0)
0%
踩一下
(0)
0%

IT培训0元试听 每期开班座位有限.0元试听抢座开始! IT培训0元试听

  • 姓名 : *
  • 电话 : *
  • QQ : *
  • 留言 :
  • 验证码 : 看不清?点击更换请输入正确的验证码

在线咨询在线咨询

温馨提示 : 请保持手机畅通,咨询老师为您
提供专属一对一报名服务。

------分隔线----------------------------
------分隔线----------------------------

推荐内容