当前位置 : IT培训网 > IT培训 > 新闻资讯 > 你对人工智能技术了解多少

你对人工智能技术了解多少

时间:2018-04-24 15:02:14  来源:电脑培训网  作者:IT培训网  已有:名学员访问该课程
标签(Tag):   人工智能技术(25)
有人认为:人工智能就是人类在了解自己、认识自己。实际上,人工智能只是人类试图了解自己而已,因为“我是谁”这个坐标原点远远还没有确定下来……

你对人工智能了解吗,什么是人工智能呢,怎么样学习这个前沿的科技技术呢,人工智能到底有多智能呢,为何人们对人工智能保持怀疑态度甚至感觉人工智能会给人来带来危险呢?今天我们就来分析下人工智能的若干问题,让各位对人工智能不在陌生?

何为人工智能:

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

关于人工智能的若干问题:

第一:有人认为:人工智能就是人类在了解自己、认识自己。实际上,人工智能只是人类试图了解自己而已,因为“我是谁”这个坐标原点远远还没有确定下来……

第二:到目前为止,机器的存储依然是形式化实现的,而人的往往是形象化实现的,人工智能的计算是形式化进行的实在(有人说: 递归函数就是图灵计算、人工智能的秘辛!),而人的算计往往是客观逻辑加上主观直觉融合而成的结果。计算出的预测不影响结果,算计出的期望却时常改变未来,从某种意义上说,态势不是计算感知出的,而是认知成的,自主有利有弊,有悖有义,是由内而外的尝试修正,是经历的验证~经验的类比迁移。

你对人工智能技术了解多少_www.itpxw.cn

第三:“我是谁”的问题就是自主的初始问题,也是人所有智能坐标体系框架的坐标原点,记忆是这个坐标系中具有方向性的意识矢量(意向性),与冯诺伊曼计算机体系的存储不同,这里面的程序规则及数据信息不是静止不变的,而是在人机环境系统交互中随机应变的(所以单独的类脑意义是不大的),这种变化的灵活程度常常反映出自主性的大小。

第四:语言交流是自主的典范,是根据交互情景(不是场景)展开的,无论怎样测试,都是脚本与非脚本的反应,其准确性的大小可以判定人机孰非…… 有人把语言分为三指,即指名、指心、指物三者, 并指出研究这三者及其之间的关联一直是人工智能面临的难题和挑战。无独有偶,19世纪,英国学者就提出过能指、所指的概念,细细想来,这些恐怕都不外乎涉及事物的属性(能指、感觉)及其之间的关系(所指、知觉)问题吧!实际上,一个词、一句话、一段文都离不开自主的情境限定,我们知道的要(所指)远比我们能说出来的(能指)要多得多吧?! 若不信? 想想你见过的那些眼睛会说话的人吧!溯根追源,究其因,一般是缘于此中的情理转化机制: 感性是理性的虫洞,穿越着理性的束缚与约束;理性是感性的黑洞,限制着感性的任性与恣意。正可谓,自主的意识驾驭着情理,同时有被情理奴役着……

第五:人脑在进行自主活动时可以产生“从欧几里得空间到拓扑空间的映射“,也就是说在做选择和控制时,人可以根据具体目的的不同,其依据进行的相似度基准(不是欧式空间上的接近性,而是情理上的联系网络)是在变化的,并依此决定进行情境分类实施。

你对人工智能技术了解多少_www.itpxw.cn

第六:一个问题无边界、无条件、无约束的求解时是哲学研究,同一个问题有边界、有条件、有约束的求解时是数学探讨。

第七:智能的本质在于自主与“相似”的判断,在于恰如其分的把握“相似度基准”分寸。人比机器的优势之一就是:可以从较少的数据中更早的发现事物的模式。其原因之一就是源于,机器没有坐标原点,即“我”是谁的问题。对人而言,事物是非存在的有---其存在并不是客观的,而是我们带着主观目的观察的结果,并且这种主客观的混合物常常是情境的上下文的产物,如围绕是(Being)、应(Should)、要(Want)、能(Can)、变(Change)等过程的建构与解构往往是同时进行的。另外,即使是同一种感觉(如视觉)也具备具体指向与抽象意蕴,握手的同时除了生理接触还可以伴随心理暗示。

第八:虚构如何修正真实,真实怎样反馈虚构?这将是一个很有味道的问题!

第九:美国心理学家海耶斯(Steven Hayes)的关系框架理论:我们大脑有一个特性,即它能在两两相关的三个事物之间产生新的关系,其中语言起着重要的作用,如A>B, B>C,我们会推出A>C。那么在纷繁复杂的情境中,这种关系框架还存在吗?!

第十:自由调节的环境系统触发了自主体系的反向运动,由此形成了人机与环境之间的多向运动或多重运动,进而导致了矛盾和冲突。

第十一:“智能的真实标志不是知识,而是想象。”爱因斯坦说:“想象力比知识更重要,因为知识是有限的,而想象力概括着世界的一切,推动着进步,并且是知识进化的源泉。”想像就是虚构,所以虚构也许是智能的本质表征,似曾相识、似是而非、似非而是等可强意会弱言传的现实存在。

第十二:人的学习与机器学习不同之处在于: 人的学习是碎片化+完整性混合进行的,所以自适应性比较强,一直在进行不足信息(资源~如时空方面)情境下的稳定预测和不稳定控制,失预、失控场景时有发生,所以如何二次、三次……多次及时的快慢多级反馈调整修正就显得越发必要,在这方面,人在非结构非标准情境下的处理机制要优于机器,而在结构化标准化场景下,机器相对而言要好于人些。并且这种自适应性是累积的,慢慢会形成一种个性化的合理性期望,至此,自主(期望+预测+控制)机制开始产生了,且成长起来……

第十三:人的学习是因果关系、相关关系甚至于风俗习惯的融合,这些有的可以程序化,很多目前还很难描述清楚(如一些主观感受、默会的知识等),而机器学习显性的知识内涵效率要远远大于隐性的概念外延。

第十四:规则与概率之间的关系是弥聚性的,规则就是大概率的存在,概率本质则是没有形成规则的状态。习惯是规则的无意识行为,学习则是概率的累积过程,包含熟悉类比和生疏修正部分,一般而言,前者是无意识的,后者是有意识的,是一个复合过程。

第十五:人处理信息的过程是变速的,有时是自动化的下意识习惯释放,有时是半自动化的有意识与无意识平衡,有时则是纯人工的慢条斯理,但是这个过程不是单纯的信息表达传输,还包括如何在知识向量空间中建构组织起相应的语法状态,以及重构出各种语义体系。

顶一下
(0)
0%
踩一下
(0)
0%

IT培训0元试听 每期开班座位有限.0元试听抢座开始! IT培训0元试听

  • 姓名 : *
  • 电话 : *
  • QQ : *
  • 留言 :
  • 验证码 : 看不清?点击更换请输入正确的验证码

在线咨询在线咨询

温馨提示 : 请保持手机畅通,咨询老师为您
提供专属一对一报名服务。

------分隔线----------------------------
------分隔线----------------------------

推荐内容